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Chebyshev Iteration Methods for Integral 
Equations of the Second Kind 

By T. W. Sag 

Abstract. In this paper the numerical solution of Fredholm integral equations of the second 
kind using an iterative method in which the solution is represented by a Chebyshev series is 
discussed. A description of a technique of Chebyshev reduction of the norm of the kernel 
for use in cases when the iterations converge slowly or not at all is also given. Finally, the 
application of the methods to other types of second-kind equations is considered. 

1. Introduction. Consider first the method of successive approximations (Tricomi 
[1]) for the solution of Fredholm equations of the second kind, which have the form 

fb 

(1.1) f (x) = g(X) + A { K(x, y)f(y) dy, 
a 

where g(x) and the kernel K(x, y) are known functions, A is a known constant and 
f (x) is to be determined. The method is to obtain successive approximations f i(x), 
i = 1, 2, . .. to the solution f (x) from the equation 

rb 

(1.2) fA(x) = g(x) + A { K(x, y)f 1(y) dy, 
a 

starting with the approximation fo(x) = g(x). 
It can be shown that if g(x) is an L2-function, i.e., lb g2(x) dx exists, and K(x, y) is an 

L2-kernel, i.e., |K 11 2 = lb K2(X, y) dy dx exists, then the successive approximations 
converge almost uniformly * to the unique function f(x) satisfying Eq. (1.1) for all 
values of . inside the circle AII = 1/11K 1. 

This classical iteration procedure may be approximated by a matrix iteration by 
replacing the iterates fi(x) by truncated Chebyshev series approximations and eval- 
uating the integral in Eq. (1.2) by a quadrature formula. Details of this procedure are 
given in Section 2. It can be shown that the matrix iteration is equivalent to the 
classical iteration for an integral equation with the functions g(x) and K(x, y) per- 
turbed. If the number of terms in the Chebyshev series approximations and the 
number of quadrature points is sufficiently large, then the perturbations will be small 
and so the condition for convergence of the matrix iteration will be almost the same 
as that for the classical iteration. The perturbations are caused by errors arising from 
the truncation of Chebyshev series, and from the quadrature formula, and so, if the 
matrix iteration converges, it gives a solution which differs from the true solution by 
a function depending on these errors. 
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In many cases the iteration does not converge, or converges too slowly for practical 
purposes. The former situation may occur when J11 K II> 1, and the latter when 
A11 KII is not significantly less than unity. In these cases we can rewrite the integral 
equation as an equation with a 'reduced' kernel (i.e., a kernel with a smaller value of 
IIKII) and solve the latter equation by iteration. Details of this technique are given 
in Section 6. 

Before describing the Chebyshev iteration method, we mention briefly two methods 
which approximate the integral equation by a matrix equation, but solve the latter 
by a direct method. The first method, due to Fox and Goodwin [2], replaces the 
integral term of (1.1) by an n-point quadrature formula at n values of x in' [a, b]. The 
contribution to the solution due to the error in the quadrature formula is computed 
by solving a sequence of matrix equations with a common matrix but with different 
right-hand sides. 

The second method, due to Elliott' [3], makes use of Chebyshev series. Equation 
(1.1) is normalized by a linear transformation of variables so that the range [a, b] 
becomes. [- 1, 1], the latter range being the most convenient for representation of 
functions by Chebyshev series. The function f(x) is approximated by a truncated 
Chebyshev series of the form 

N 

(1.3) f (x)_ A' anTnWx, 
n=O 

where T11(x) = cos (n arccos x) is the Chebyshev polynomial of degree n of the first 
kind and A' denotes a sum for which the first term is halved. A Chebyshev approxima- 
tion of the form 

M 

(1.4) K(x, y) _ A' bn(x)Tn(Y) 
n=O 

for the kernel K(x, y) is then determined at N + 1 points x = xi, i = 0, ..., N in 
[-1, 1]. Using a formula for integrals of the form 

X T(x)Tn(x) dx, 

it is then possible to express the integral term of Eq. (1.1) as a series of the form 
1 ~~~~N 

(1.5) K(x, y)f(y) dx Na"Bl(X) 
1n=O 

at the points x = xi, where the fln(x) are functions of the bn(x). Substituting Eqs. (1.3) 
and (1.5) in the integral equation at the N + 1 points xi, i = 0, ..., N. yields the 
matrix equation 

(1.6) (T - AB)a =g, 

where T and B are matrices with elements 

Tij = zTj{xi) 
O i 0= O... ., N 

Bij = ZJ&xi) 
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Tij = TAXji) 
j = 1, ..., Ng i = 0. ..., N. 

Bij = fAxi) 

and a and g are vectors with ith components ai and g(xi), respectively, for i = O. ... , N. 
Equation (1.6) is solved directly to obtain the coefficients aj. The Chebyshev series (1.3) 
may then be evaluated at any point x by use of a recurrence relation technique given 
by Clenshaw\ [4]. This process is more suitable for an automatic computer, and much 
faster and generally more accurate than polynomial interpolation between N + 1 
function values. The latter process would be required to evaluate the solution at an 
arbitrary point x from the solution given by the method of Fox and Goodwin. The 
author prefers the use of Chebyshev series to function values because of the above, 
and also because it is easier to estimate the maximum error due to use of truncated 
Chebyshev series (see Section 4). The motivation for the use of an iterative rather 
than a direct method is that the former method can be applied with simple modifica- 
tions (see Section 8) to other types of second kind equations. Also, it has been shown 
by the author [5] that the computing time required to set up the final matrix equation 
is approximately the same for Elliott's method as for the Chebyshev iteration method, 
and that in cases when JAI |IKII is significantly smaller than unity the latter method 
produces a solution of specified accuracy in a shorter time. 

2. Chebyshev Iteration Method. In this section we consider a Fredholm equation 
of the second kind which has been transformed by a linear transformation of variables 
from the form of (1.1) to the form 

(2.1) f (X) = g(x) + A { K(x, y)f (y) dy. 

In order that Chebyshev series may be used, we restrict g(x) to the class of functions 
which are piecewise smooth in [-1, 1] and K(x, y) to the class of functions for which 

I K(x, y)Tk(y) dy, k = 0, 1, 2, . .. is piecewise smooth in [-1, 1]. 
We choose an initial approximation f o(x) to f (x), expand it in a truncated Cheby- 

shev seriesand then approximate the iterations 

(2.2) f i(X) = g(x) + A { K(x, y)f i(Y) dy, i = 1, 2, ... 

as follows. We assume a Chebyshev expansion 
N2 

(2.3) f i-(x) = Y' aj TJx) 
j=O 

has been obtained from the previous iteration, assume that the ith iterate has the form 
N 

(2.4) fi(x)= I' AjTix), N ? N2, 
j=O 

and calculate Chebyshev coefficients in the expansions 
N 

(2.5) g(x) _ A' gjT (x), 
j=0 
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I1 N 

(2.6) K(x, y)Tk(y)dy NZ' PkjTj(X). 
J-1 ~~~j=o 

The Chebyshev coefficients of f0(x) and those for (2.5) and (2.6) are usually cal- 
culated by a curve fitting method of Lanczos [6]. A function +(x) with an infinite 
Chebyshev expansion ?O%0 aiT,(x) is approximated by a series of the form 

N 

(2.7) </(N)(x) - ' biTi(x). 
i=o 

If +(N)(X) = +(x), then, by virtue of the orthogonality relations, satisfied by the Cheby- 
shev polynomials for summation over the points xj = cosji/N, we have 

(2.8a) bi = bi, i = 0 ..., N -1; bN = ZbN, 

where 
2 N 

(2.8b) = 
- =- " 4(xj)Ti(xj), N j=0 

where A" indicates a sum with first and last terms halved. In this case we have ac = bi, 
i = 0, ..., N. but in general the coefficients of +(N)(x) and +(x) are related by the 
formula 

00 

(2.9) bi = ai + Z (a2pN +i + C2pN-i), 
p= 1 

given by Clenshaw [4]. 
For (2.6) the function values required for evaluating the coefficients flkj are eval- 

uated by approximating the integral on the left-hand side by a quadrature formula. 
On substituting (2.3), (2.4), (2.5) and (2.6) into (2.2), rearranging the resulting 

double sum, and equating coefficients of T (x), we obtain 
N2 

(2.10) Aj = gj + Z E flkjak, j = 0,..., N, 
k=O 

which may be written in the matrix form 

(2.1Oa) A = g + )Ba, 

where A, g and a are vectors of the coefficients A;, gj and aj, and B is the matrix with 
elements 

Bio = fpoi; Bij = flji; j = 1, ..., N2, i = 0,..., N. 

We now consider the errors in the approximating processes used in obtaining the 
matrix equation. The truncation error in Chebyshev approximation of a function 
+(x) is 

R(x)= +(x) - 4(N)(x) 

00 N 

= Z' caiTi(x) - no biTi(x) 
i=O i=O 

00 

= Z if(Ti(x) - Tm(X)), 
i=N+ 1 
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where, from (2.9), m =i - 2jN1 with chosen so that 0 < m ? N. Since ITA(x) - 
Tm(x)I ? 2 for xE [-1, 1], we have IRO(x)I < 2Z=N+1 jail. If the function +(x) 
has a rapidly convergent Chebyshev series and we can assume that Ic*N+kl < IaNI/2k 
for suitably chosen large N, then it follows that 

(2.11) 1R4(x)I ? 2|XaN/ Z 1/2i = 2IaNI. 
i = 1 

This assumption is not possible for functions which are even or odd or nearly so, 
as then alternate coefficients are zero or almost zero. To cover all types of functions, 
we replace 21xN1 in Eq. (2.11) by FXN-II + IJNI and use the inequality 

(2.12) /R4(x)/ _? 19N-11 + kXNI 

for estimating truncation error. 
To evaluate the integrals on the left-hand side of (2.6) one could follow Elliott's 

method and approximate the kernel K(x, y) by a truncated Chebyshev series of the 
form (1.4) and then use a formula to evaluate ll 1 Tn(y)Tm(y) dy exactly. Alternatively 
one can evaluate the integrals using a quadrature formula of the type 

fl ~M 
(2.13) O(x)dx wiM(xi). 

-1 4(x) 

The first method is essentially a special case of the second as the Chebyshev coefficients 
of K(x, y) are calculated as linear combinations of values of K(x, y). For M as in (1.4) 
and k as in (2.6) this method gives the exact value of the integral (2.6) if the integrand 
is a polynomial of degree M + k. Hence, one would expect about the same accuracy 
or better if one used a quadrature formula of type (2.13) which is exact for poly- 
nomials of degree M + N. If M > N, then it can be expected that a Gaussian quadra- 
ture formula using M points, which is exact for polynomials of degree 2M - 1, will 
give at least comparable accuracy to the above method. 

A priori estimates of integration error are in general difficult to make whereas a 
posteriori estimates can be made in some cases if the integral is evaluated for several 
different numbers of points. For this purpose it has been found convenient to use a 
low order Gaussian formula over a number of equal subintervals of the interval of 
integration. In practice it is found that this type of formula gives comparable accuracy 
to a higher order Gaussian formula over the whole interval using the same total 
number of points. The method is convenient because firstly, for any specified number 
of subintervals the weights wi and evaluation points xi are readily obtainable from 
those of the basic Gaussian formula. Secondly, an estimate of the error in using a 
quadrature formula with M evaluation points can be computed by comparing values 
of the integrals obtained using M and 2M points respectively. The author has shown 
in [5] that if the basic Gaussian formula is exact for polynomials of degree ? n, then 

(2.14) I - I(M) CM -(n+1) 

for sufficiently large M, where c is a constant, I(M) denotes the approximate value 
of the integral using M points and I denotes the exact value. On applying (2.14), 
with M replaced by 2M, the computable estimate 

2 n+ 1 

(2.15) II-I(M) 2n+ 1 I(2M)- I(M)I I' (MI 1ijII2M 
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is obtained. Finally, the method can be used for nonlinear integral equations, whereas 
the method involving Chebyshev expansion of the kernel is not applicable in this case. 

3. Error Analysis. In this section we derive an expression for the difference be- 
tween the solution f(x) of (2.1) and the ith computed iterate flax) of the Chebyshev 
iteration method of Section 2. 

Let 1 1 K(x, y)f - l(Y) dy = Qi(x) + Ei(x), where Qi(x) is the value of the integral 
given by a quadrature formula of type (2.13). Let 

fi(x) = g(x) + A. K(x, y)f-i (y) dy. 

Then using the notation of Section 2 for truncated Chebyshev series and truncation 
error, we have 

Ji(x) - fi(x) = g(x) + A K(x, y)f -1(Y) dy - g(N)(x) - AQ (N)(x) 
J- 

(3.1) = Rg(x) + ARQi(x) + AEi(x) 

= Rfi(x) + )E1N)(x). 

Also 

f(x) - fi(X) = Ji(x) - fA(x) - (fi(x) - f(x)) 

= Rf1(X) + .E(N)(X) + A K(x, y)(f(y)- fj._(y)) dy 

(3.2) a 
(3)= Rf(x) + )E(N)(X) + A - K(xy)(f(y) -fi(y)) dy 

+ iA| K(x, y)(f i(Y) -f i- 1(Y)) dy. 

Let El = max1? -x1 <I(x) - fi(x)I and suppose we have |Rh(x)I < et, 
IAEPN)(x)I ? ei, |f (x) -f l(x)| < ef, and 

jK(x, y)j dy < H. 

Then we have 

If(x) - f (x)l < et + ei + kI|H(qi + eI). 

Hence 

?i < et + ei + AkIH(qi + eI), 

and so 

(3.3) Ejl ? (et + ei + kI|HeI)/(1 - AIH), 
provided 1 - jIAH > 0. 

4. Error Estimates. In this section we show how upper estimates et, ei, and eI for 
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Chebyshev truncation error, integration error, and iteration error (the difference 
between successive iterates) are obtained. 

Suppose fi(x) as defined in Section 3 has the Chebyshev series representation 

fJ(x)= Et AjT{x), 
j=O 

and that E(N)(x)= o i;j Tj(x). Then from (3.1) and (2.4) we have 
N 

J(N)(x) = E' (Aj + )j) )T(x). 
j=0 

Hence from (2.9) it follows that 

(4.1a) AN + AEN = AN + E A(2p+ I)N, 
p= 1 

and 
00 

(4.1b) AN-1 + );N-1 = AN - I + E (A(2p+ 1)N - I + A(2p -1)N+ i). 
p= 1 

If the quadrature formula (2.13) is reasonably accurate we can assume that )EN and 
AEN- i are negligible compared with AN and AN-I respectively. Also, if fi(x) has a 
rapidly convergent Chebyshev series, then on the right-hand side of (4.1a) we can 
neglect all terms in the sum, and on the right-hand side of (4.1b) we can neglect all 
terms in the sum except AN+ + . Under these assumptions we have 

AN AN, AN- AN-1 + AN+1. 

If we make the additional assumption 

IAN+11 |?< I|AN-11, 

we have approximately, on using estimate (2.12), 

JR fj(x)| 4IAN-11 + IANI. 

For simplicity, we replace this by 

(4.2) fRfi(x)f < et = IAN-11 + IANI, 

which is equivalent to allowing a slightly larger truncation error than the prescribed 
limit. 

To obtain an upper estimate of integration error, we first determine the Chebyshev 
coefficients of a new ith iterate 

N 

(4.i3) fr(x)= A' A+ TjXx), j=0 

by using a quadrature formula with twice the number of points as were used for f i(x). 
Assuming the quadrature formula is exact for polynomials of degree _ n, we have 
from (2.15) 

2n+ 1 
(4.4) JAES)(x)I 2' - 1 I (x) - f,(x)I. 

From (2.4), (4.3) and (4.4), and the fact that I Tn(x) _? 1, we have approximately 
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2n+ 1 N 
(4.5) JAE'(N)(X)I -A2+-- 1 AEI, 21- I =o 

but for simplicity we replace this by 
N 

(4.6) VAE(N))(x)I ? ei = Z' 1A7 -AjI. 
j=0 

For the iteration error we have 
N N 

(4.7) Ifi(x)- fYi(x)I = Z' (Aj - aj)Tj(x) ? ' Aj - aj = eL. 
j=0 j=0 

5. Practical Procedure. In the practical application of the Chebyshev iteration 
method, during the first few iterations, the number of Chebyshev coefficients N + 1 
is increased until the estimate (4.2) of Chebyshev truncation error becomes smaller 
than a prescribed limit. 

The next iteration is carried out repeatedly with the number of quadrature points 
being doubled each time, until the integration error estimate (4.6) becomes smaller 
than the prescribed limit. 

Iteration then proceeds with N and M fixed until the iteration error estimate (4.7) 
becomes smaller than the prescribed limit. 

In the above the prescribed limit used is sMf, where e is a prescribed number and 
Mf is an estimate of max- 1 < x < If i(x)I, where f i(x) is the current iterate. 

In addition, limits are placed on N, M, and the number of iterations, and if any of 
these limits are exceeded, the value of the appropriate error estimate is stored and 
control passes to the next stage of the procedure. At the end of the computation e is 
replaced by the largest of the error estimates if any of them exceeds S. 

6. Chebyshev Reduction of the Kernel. In this section we describe how the integral 
equation (2.1) can be written as an equation with a 'reduced' kernel (see Section 1), 
and how the latter equation can be solved by iteration. 

The 'reduced' kernel is formed by subtracting a series of degenerate kernels from 
the kernel of the original equation. Given a set of linearly independent functions 
YJ{y), j = 1, . .., M, we can determine a set of functions X.x), j = 1, ..., M, such 
that 

||KM||= p p KM2(x, y) dy dx 

is a minimum, where 
M 

KM(x, y) = K(x, y) - E XJ{x)YJ{y). 
j=1 

As the Chebyshev iteration method gives the solution of the integral equation in 
terms of a Chebyshev series, it is convenient to reduce the kernel of the equation by 
subtracting a Chebyshev series of the form 

M-1 

Ai(x)T=(y) i=O 
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with the functions Ai(x) chosen to minimize 
rl ~~~M-1 2 

(6.1) 1 K(x, y) - A Ai(x)T1((y) dy 

for each x int [-1, 1]. This ensures that 
1 ?1 / ~~M-1 \2 

(6.2) (K(x, y) - E Ai(x)Ti(y) dy dx 
-1 J-1 \ ~i=o 

is a minimum. To obtain the Ai(x) we differentiate (6.1) with respect to each A,(x) 
for fixed x, and equate the derivatives to zero. This yields a system of linear equations 
for the A1(x). On solving this system it is found that the Ai(x) are linear combinations 
of integrals of the form 

1 

(6.3) { K(x, y)Tk(Y) dy. 

For example, for the case M = 2 we obtain 

I1 3' 
Ao(x) = - I K(x, y) dy; AI(x) = K(x, y)T1(y) dy. 

2 -l 2 -1 

From Eqs. (2.6) and (2.10a) we see that the coefficients of the truncated Chebyshev 
series for the Ai(x) are linear combinations of elements of the matrix B defined in (2.1Oa). 

If we let 
M-1 

(6.4) KM(x, y) = K(x, y) - A(x)Tj(y), 
i=O 

and let BM be the matrix corresponding to KM(x, y) in the same way as B corresponds 
to K(x, y), then it is found that the elements of BM are linear combinations of ele- 
ments of B. For example, in the case M = 2 we find that 

B2jj = Bij + B10/(j2 - 1), j even, 

= Bi; + 3B 1/(j2 - 4), j odd. 

The quantity 11KM 112 (see (6.2)) is readily expressible in terms of ||K 112 and inte- 
grals of the form (6.3). For example, for M = 2 we obtain 

II K2IV = - {2 (J K K(x, y) dy) - (J K(x, y)TI(y) dy)} dx. 

We now consider the solution of the equation which results when the original Eq. 
(2.1) is rewritten in terms of the kernel KM(x, y) of (6.4). The new equation is 

M-1 p 

(6.5) fZ(x) = g(x) + E Aci +IAi(x) + A 1 KM(x, y)f(y)dy, 
t=O J 

where the ci are given by 
1 

(6.6) ci= Tj - 1(y)f (y) dy; i =1, ... ,M. 
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At this stage the ci are undetermined, but if 4"i(x), i = 0, ..., M, are the solutions 
of the integral equations 

(6.7) 4('(x) = gO'U(x) + A { KM(x, y)o(')(y) dy, i = 0 .. ., M 

where g(?)(x) = g(x), g(i)(x) = ;A- i(x), i = 1 . . . M, then ' 

M 

(6.8) f(x) -= O(O(x) + Eci`(x) 
i = 1 

is the solution of (6.5). Substituting (6.8) into (6.6), we obtain 

* I jl I 

and hence 

(6.9) E Cj bij - Tj -I(y)4(j)(y) dy)= Ti-l 1(y)k(1(y) dy, i= 1. M. 

To solve Eq. (6.5), we first solve the M + 1 integral equations (6.7) by the Cheby- 
shev iteration method and then solve the M simultaneous linear equations (6.9) to 
obtain the ci, and finally use (6.8) to obtain the required solution. The integrals of the 
type IL Tj(y)4(j)(y) dy, which occur in the coefficients of the linear equations (6.9), 
can be evaluated from a formula for J! 1 Tj(y)Tj{y) dy, after the Chebyshev coeffi- 
cients of the functions 4I')(x) have been found by the Chebyshev iteration method. 

The work involved in solving the integral equations (6.7) is not excessive as we 
need only calculate one matrix BM corresponding to the common kernel KM(x, y), 
and, provided ||KM is small, very few iterations will be required to obtain an accu- 
rate solution. If 11 KM can be made small using a small value of M, the work involved 
in solving the linear equations (6.9) is negligible. If a larger value of M is required to 
make 1iKMW small, it may be better to solve the original integral equation (2.1) by a 
direct method such as Elliott's (see Section 1). In practice the author has restricted 
himself to reductions of order M ? 3. 

Before carrying out any reduction of the kernel, it is possible to obtain approximate 
values for 11 KM 11 for various values of M. From these values it is possible to compute 
theoretical estimates of the amount of work required to obtain the solution of the 
integral equation to a given accuracy for various orders of reduction. These estimates 
can then be used to select the optimal order of reduction. 

7. Numerical Examples. Chebyshev reduction of the kernel by application of the 
Chebyshev iteration method was used to solve 

(a) Love's equation (see Love [7]): 

fax) = 1 + L j 11 (x - Y)2 

(b) the Lichtenstein-Gershgorin equation (see [8]): 

f(x) = 2 arctan(k sin xx//(k2(cos mx + cos2nrx) + sin2nX)) 

+ kf f(y) dyv(k2 + 1 - (k2 _- )cos ir(x + y)). k = 1.2, 
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(c) f(x) = e-(x+6) + (x + 3)e(x+2)y -3f(y) dy. 
1 

In examples (a) and (b) the solutions of the equations are even and odd functions 
respectively. The author has shown, [5], that it is possible to obtain the solution in 
these cases by computing only even or odd Chebyshev coefficients respectively. Only 
the odd columns of the iteration matrix BM are different for MJ = 1 and M = 2 and 
so for Eq. (a) the computations are the same as for these reductions. Similarly, for 
Eq. (b) the computations are the same for M = 0 and M = 1, and for M = 2 and 
M = 3. 

For each example an accuracy limit of 10-6 was prescribed. The computations 
are summarized in Tables 1, 2, and 3. The computed solutions of Eqs. (a) and (b) 
were similar to those obtained by Elliott [3] who used the same accuracy limit. In 

Table 3 computed solutions of Eq. (c) are tabulated along with the exact solution ex. 

For this equation certain error estimates did not fall below the prescribed limit; this 

is indicated in the summary of computation, and the values of the estimates are given 
below the summary. The maximum relative errors in the computed solutions are also 
given for comparison. 

TABLE 1. Love's equation (a) 

Order of Reduction 0 1 3 

|| KM 112 0.2076 0.0042 0.0005 

Final number of 7 8 9 
Chebyshev coefficients 

Final number of 24 30 30 
Quadrature Points 

Number of iterations 12 2 2 

Average ratio of successive 0.454 0.040 0.005 
iteration error estimates 

From the tables it appears that the effect of the higher order reductions in reducing 
the number of iterations is not as marked as one might expect from examining the 
norms IIKM I of the reduced kernels. This is because at least one or two iterations 
are required before the iterates settle down. 

8. Application to Other Types of Second Kind Equations. The Chebyshev iteration 
method and the technique of Chebyshev reduction of the kernel have been applied 
to systems of Fredholm equations of the second kind and to Volterra equations. Only 
minor modifications to the methods given in Sections 2 and 6 are required. Details 
are given in [5]. 
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TABLE 2. Lichtenstein-Gershgorin equation (b) 

Order of Reduction 0 2 

|| KM || 2 0.00861 0.00357 

Final number of 
Chebyshev Coefficients 16 16 

Final number of 30 30 
Quadrature points 

Number of iterations 4 4 

Average ratio of successive 0.091 0.037 
iteration error estimates 

Nonlinear integral equations have also been solved by a Chebyshev iteration 
method. The iteration equation in this case is not linear, but the practical procedure 
of Section 5 may still be used. A nonlinear equation of the form 

(8.1) f(x) = {_ K(x, y, f(x), f(y)) dy 

may be solved under certain conditions [1], [5] by an iteration of the form 

(8.2) fi(x)= 2 K(x, y, i-(x), f i-(y)) dy, 

starting with the approximation fo(x)_ 0. Assuming the iterate - 1(x) has been 
determined as a truncated Chebyshev series, the iteration (8.2) can be carried out by 
expanding the right-hand side into a truncated Chebyshev series by the Lanczos 
curve fitting method discussed in Section 2, and the use of a quadrature formula to 
evaluate the integrals. Values of fi - 1(x) required for computing values of the inte- 
grand K(x, y, . _l(x), fji1(Y)) may be obtained by the method of Clenshaw (see 
Section 1). 

Effectively the same iteration may be carried out by representing the iterates fi(x) 
by their values at the points Xk = cos kn/N, k = 0, . . , N, since these are the values 
used to calculate Chebyshev coefficients by the Lanczos method. With some manipu- 
lation it can be shown that the truncated Chebyshev series 4(N)(x) of a function ?(x) 
may be expressed in the form 

N 

(8.3) O(N)(X) Z" E Xk(X)4(Xk), 
k = 0 

where 

LXk(X) = (-I)k+ 1(1 - x2)1/2sin(N arccos x)/(N(x - Xk)), x # Xk, 

= 1, x = Xk, 
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TABLE 3. Equation (c) 

Order of Reduction 0 1 2 3 

|| KMI 12 1.214 0.736 0.204 0.032 

Final number of 14 10 12 12 
Chebyshev Coefficients 

Final Number of 96 72t 961 96 
Quadrature Points967t6t6 

Number of iterations 30* 15 4 3 

Average ratio of successive 0.95 0.454 0.083 0.032 
iteration error estimates 

*Iteration error estimate 1.0 x 10-2. 
tIntegration error estimate 3.6 x 104. 
jIntegration error estimate 5.8 x 10- . 

Computed Solution for reduction of order 
True 

X 1 2 3 Solution 

- 1.0 0.3678437 0.3678880 0.3678793 0.3678794 

-0.8 0.4492850 0.4493394 0.4493288 0.4493290 

-0.6 0.5487578 0.5488245 0.5488114 0.5488116 

-0.4 0.6702540 0.6703358 0.6703198 0.6703200 

-0.2 0.8186500 0.8187500 0.8187305 0.8187308 

0.0 0.9999012 1.0000236 0.9999996 1.0000000 

0.2 1.2212820 1.2214316 1.2214023 1.2214028 

0.4 1.4916771 1.4918600 1.4918242 1.4918247 

0.6 1.8219384 1.8221619 1.8221182 1.8221188 

0.8 2.2253206 2.2255935 2.2255401 2.2255409 

1.0 2.7180126 2.7183461 2.7182809 2.7182818 

Maximum 
Relative 9.9 x 10- 2.4 x 10-5 3.3 x I0- 

Error 



354 T. W. SAG 

Using a formula of type (8.3), values of the iterate fi- 1(x) required for evaluating the 
integrand may be computed in about the same time as that taken by Clenshaw's 
method. Chebyshev coefficients (apart from the N - 1st and Nth, which are required 
for estimating truncation error) need not be computed at all. Because of this the com- 
puting time per iteration is somewhat reduced. 

It is not possible to use kernel reducing techniques on nonlinear integral equations. 
However, Anderson [9] describes some methods for accelerating the convergence of 
general iterative procedures, and these methods are very effective when applied to 
nonlinear integral equations. 

The Chebyshev iteration described above was applied to the integral equation 

(8.4) f (x) = x + 0.5 XYf (y) dy, 

which has also been solved by Haselgrove (unpublished work), who obtained a set of 
nonlinear algebraic equations by replacing the integral by a quadrature formula 
using 21 equally spaced points, and solved these by a method which he describes in 
[10]. An estimated accuracy of order 10-6 was achieved using 7 Chebyshev coeffi- 
cients after 20 iterations. The final solution is tabulated together with Haselgrove's 
solution in Table 4. 

TABLE 4 

Solution of Eq. (8.4) 

Solution by Haselgrove's 
x Iteration Method Solution 

0.0 0.2791588 0.2793876 
0.1 0.3608004 0.3609945 
0.2 0.4437933 0.4439571 
0.3 0.5280324 0.5281694 
0.4 0.6134208 0.6135344 
0.5 0.6998697 0.6999627 
0.6 0.7872971 0.7873723 
0.7 0.8756278 0.8756874 
0.8 0.9647925 0.9648387 
0.9 1.0547276 1.0547622 
1.0 1.1453743 1.1453990 
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